On the Arithmetic of ℓ-th Power Twists of Jacobian Varieties of Superelliptic Curves

$$y^\ell = f(x).$$

University of Georgia

Sungkon Chang
The Superelliptic Curves: \(y^\ell = f(x) \)

where \(\ell \) is a regular prime number,
\(f(x) \) is a monic polynomial over \(\mathbb{Z} \)
of degree \(d \), with distinct roots (in \(\overline{\mathbb{Q}} \)),
and \(\ell \nmid d \).

Let \(K := \mathbb{Q}(\zeta_\ell) \), and \(C/\mathbb{Q} \) be the normalization
of \(y^\ell = f(x) \). For \(D \in \mathbb{Q}^* \), we denote by \(C_D/\mathbb{Q} \)
the normalization of
\[D \, y^\ell = f(x). \]

\(J/\mathbb{Q} := \) the Jacobian variety of \(C/\mathbb{Q} \),
\(J_D/\mathbb{Q} := \) the Jacobian variety of \(C_D/\mathbb{Q} \).

Let \(\lambda := 1 - [\zeta_\ell] \in \text{End}_K(J_D) \).
We denote the \(\lambda \)-Selmer group of \((J_D)_K \) by
\[\text{Sel}^{(\lambda)}(J_D, K). \]

Note rank \(J_D(\mathbb{Q}) \leq \dim_{\mathbb{F}_\ell} \text{Sel}^{(\lambda)}(J_D, K). \)

Key Fact

\[J_D[\lambda] \cong_K J[\lambda] \]
Main Results

Notation: $\mathcal{P}_\ell(X)$ denotes the set of positive, ℓ-th power-free integers $< X$.

Theorem 1 (C.)
Suppose that $f(x)$ is irreducible over K, and $p := \deg f$ is prime ($\neq \ell$).

Then, there is a positive constant $\epsilon < 1$ depending on C such that

$$
\# \left\{ D \in \mathcal{P}_\ell(X) : \dim \mathbb{F}_\ell \text{Sel}^{(\lambda)}(J_D, K) \\
= \dim \mathbb{F}_\ell \text{Sel}^{(\lambda)}(J, K) \right\} \gg C \frac{X}{(\log X)^\epsilon}.
$$
Main Results

Recall

\[
\text{rank } J_D(\mathbb{Q}) \leq \dim_{\mathbb{F}_\ell} \text{Sel}^{(\lambda)}(J_D, K)
\]

Cor. Suppose that there is a positive integer \(D_0\) such that

\[
\text{Sel}^{(\lambda)}(J_{D_0}, K) = 0.
\]

Then, there is a positive constant \(\epsilon < 1\) depending on \(C\) such that

\[
\# \{D \in \mathcal{P}_\ell(X) : \text{rank } J_D(\mathbb{Q}) = 0\} \gg_{C, D_0} \frac{X}{(\log X)^\epsilon}.
\] (1)

K. Ono showed (1) for all elliptic curves without 2-torsion points using the theory of modular forms.
Main Results

Theorem 2 (C.)
Suppose that \(f(x) \) has a root defined over \(K \).

Then, given a positive integer \(n \), there is a positive constant \(\epsilon < 1 \) depending on \(C \) and \(n \) such that

\[
\# \{ D \in \mathcal{P}_\ell(X) : \dim \mathbb{F}_\ell \operatorname{Sel}^{(\lambda)}(J_D, K) > n \} \gg \frac{X}{(\log X)^\epsilon}.
\]

In particular,

\[
\limsup_D \ dim \mathbb{F}_\ell \operatorname{Sel}^{(\lambda)}(J_D, K) = \infty. \quad (2)
\]
Application of Thm 1

On the number of rational points

Suppose $f(x) \in \mathbb{Z}[x]$ is irreducible over K, and has prime degree p. Suppose the genus of C is > 1.

Cor. Let $n := \dim_{\mathbb{F}_\ell} \text{Sel}^{(\lambda)}(J_{D_0}, K)$ for a positive integer D_0.

Then, there are positive constants γ, and $\epsilon < 1$ such that

$$\# \{ D \in \mathcal{P}_\ell(X) : \# C_D(\mathbb{Q}) \leq \gamma 7^n \} \gg \frac{X}{(\log X)^\epsilon}. \tag{3}$$

Example: Let $A \in \mathbb{Z}$ be square-free, $\not\equiv 0 \pmod{\ell}$, and $\ell > 3$. Let

$$X_D : y(x^{\ell-1} - Ay^{\ell-1}) = D.$$

Then, (3) holds for $X_D(\mathbb{Q})$.
Application of Thm 1

Hyperelliptic Curves: $y^2 = f(x)$.

Cor. Suppose $\deg f := p \geq 5$ is prime, and $f(x)$ is irreducible over \mathbb{Q}. Suppose that there is $D_0 \in \mathbb{Z}$ such that

$$n := \dim \mathbb{F}_2 \text{Sel}^{(2)}(J_{D_0}, \mathbb{Q}) < (p - 1)/2.$$ Then, there is a positive constant $\epsilon < 1$ depending on C and n such that

$$\# \{ D \in \mathcal{P}_2(X) : \# C_D(\mathbb{Q}) \leq 2n+1 \} \gg \frac{X}{(\log X)^\epsilon}.$$

Example: Let $C_D : D \ y^2 = x^5 + x + 12$. Then, $\text{Sel}^{(2)}(J, \mathbb{Q}) = 0$. Hence,

$$\# \{ D \in \mathcal{P}_2(X) : \# C_D(\mathbb{Q}) = \{\infty\} \} \gg \frac{X}{(\log X)^\epsilon}.$$
Application of Thm 1

Quadratic Twists of an Elliptic Curve:
\[D y^2 = x^3 + ax + b. \]

Cor. Let us assume that \(\text{III}(E'/\mathbb{Q}) \) is finite for all elliptic curves \(E'/\mathbb{Q} \). Let \(E/\mathbb{Q} \) be an elliptic curve without \(\mathbb{Q} \)-rational 2-torsion points such that \(\dim \mathbb{F}_2 \text{Sel}^{(2)}(E_{D_0}, \mathbb{Q}) = 1 \) for some positive \(D_0 \in \mathbb{Z} \). Then, there is a positive constant \(\epsilon < 1 \) such that

\[
\# \{ D \in \mathcal{P}_2(X) : \text{rank } E_D(\mathbb{Q}) = 1, \quad \text{III}(E_D/\mathbb{Q})[2] = 0 \} \gg E,D_0 \frac{X}{(\log X)^\epsilon}.
\]

Thm (Iwaniec-Sarnak, 2000) Assume RH. Then, for all elliptic curves \(E/\mathbb{Q} \),

\[
\# \{|D| < X : \text{rank } E_D(\mathbb{Q}) = 1 \} \gg X.
\]
Application of Thm 1

Cubic Twists of Elliptic Curves

Let E/\mathbb{Q} be $y^2 = x^3 + A$ such that $A \neq -3, +1$ is a square-free integer, and for $D \in \mathbb{Q}^*$, let E_D be the cubic twist

$$y^2 = x^3 + AD^2.$$

Cor. Suppose there is a positive integer D_0 s.t. $\dim_{\mathbb{F}_3} \text{Sel}^\lambda(E^{D_0}, K) = 0$. Then, there is a positive constant $\epsilon < 1$ such that

$$\# \{D \in \mathcal{P}_3(X) : \text{rank } E_D^D(\mathbb{Q}) = 0\} \gg E \frac{X}{(\log X)^\epsilon}.$$

Example: There are infinitely many square-free A s.t. $E/\mathbb{Q} : y^2 = x^3 + A$ has infinitely many cubic twists of rank 0.

Remark: What is known is D. Liemann’s result for $x^3 + y^3 = D$ (isomorphic to $y^2 = x^3 - 432D^2$).
Superelliptic Curves \(y^\ell = f(x) \)
Over a Function Field \(\mathbb{F}_q(t) \)

where \(\ell \neq q \) are prime numbers,
\(f(x) \in \mathbb{F}_q[x] \) is monic irreducible
over the constant field \(\mathbb{F}_q \)
of degree \(d \), with distinct roots,
and \(\ell \nmid d \).

Let \(R := \mathbb{F}_q[t] \), and \(K := \mathbb{F}_q(t) \). For \(D \in K^* \),
let \(J_D/K \) be the Jacobian of the normalization of \(D y^\ell = f(x) \).

Thm. Suppose that \(q \equiv 1 \mod \ell \).
Then, there is a set \(\mathcal{D} \) of prime elements in \(R \) with positive Dirichlet density such that whenever \(D \) is a product of elements \(\in \mathcal{D} \),
\[
\text{rank } J_D(K) = 0. \tag{4}
\]
In particular, there are infinitely many \(D \) such that (4) holds.