AMM 11395. Proposed by M. Farrokhi D.G., University of Tsukuba, Tsukuba, Japan. Prove that if \(H \) is a finite subgroup of the group \(G \) of all continuous bijections of \([0,1]\) to itself, then the order of \(H \) is 1 or 2.

Solution by the Armstrong Problem Solvers, Armstrong Atlantic State University, Savannah, GA.

First notice that any element of \(G \) must be strictly monotone, since otherwise it would fail to be injective. Let \(G^+ \) denote the set of increasing members of \(G \), and \(G^- \) the set of decreasing members of \(G \).

Lemma 1: If \(f, g \in G^- \), then \(g \circ f \in G^+ \).

Proof: If \(0 \leq a < b \leq 1 \), then \(f(a) > f(b) \) and \(g(f(a)) < g(f(b)) \).

Lemma 2: If \(g \in G^+ \) has finite order, then \(g \) is the identity function.

Proof: If \(g \) is not the identity, than \(g(a) \neq a \) for some \(a \in [0,1] \). If \(g(a) < a \), then since \(g \) is increasing, \((g \circ g)(a) < g(a) < a \), and \(g^n(a) < a \) for all natural numbers \(n \). Similarly, if \(g(a) > a \), then \(g^n(a) > a \) for all natural numbers \(n \). Thus, if \(g \in G^+ \) has finite order, then \(g \) must be the identity function.

Lemma 3: If the order of \(g \in G^- \) is finite, then the order of \(g \) is 2.

Proof: From Lemma 1, \(g \circ g \in G^+ \). Since the order of \(g \) is finite, then the order of \(g \circ g \) is also finite, and by Lemma 2, \(g \circ g \) is the identity function; thus, the order of \(g \) is 2.

Suppose \(H \) is a finite subgroup of \(G \); then every element of \(H \) must have finite order. If \(f \in H \) is increasing, then \(f \) must be the identity, by Lemma 2. If \(f \in H \) is decreasing, then \(f \) must have order 2 by Lemma 3, so \(f = f^{-1} \). If \(f, g \in H \) are both decreasing, then \(g \circ f \) is increasing by Lemma 1. Since \(g \circ f \in G^+ \) and has finite order, it must be the identity by Lemma 2, so \(g = f^{-1} = f \). Therefore, \(H \) contains exactly one element of \(G^+ \) and at most one element of \(G^- \), so \(|H| = 1\) or 2.

Armstrong Problem Solvers
Armstrong Atlantic State University
Department of Mathematics
11935 Abercorn Street
Savannah, GA 31419-1997
e-mail: James.Brawner@armstrong.edu